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Abstract—The neural network of COVID-19 5 days forecasting 
in Russian Federation region based on epidemic and social data 
from 2020 to 2023 is constructed and analyzed. The structure of 
neural network consists in recurrent and full-connected layers. 
In addition to training the neural network, its hyperparameters 
were optimized, such as the optimal number of neurons in each 
layer, regularization parameters, and optimizer parameters. It 
is shown that the mean squared error on the test period from 
07.2022 to 05.2023 is approximately 5% for new diagnosed of 
COVID-19 and hospitalized ones in Moscow, Saint Petersburg 
and Novosibirsk region. The proposed approach makes it 
possible to refine mathematical models in epidemiology. 
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I. INTRODUCTION 
The COVID-19 pandemic became a reason to construct 

new mathematical models in epidemiology. Classical 
approaches such as SIR-type models [1]–[3] and agent-based 
models [4]–[7] should be modified taking into account socio-
economic processes that influence on the epidemic situation 
as well as region features (medical system, ecology, 
population ages and so on) and population behavior for better 
forecasting. These models are characterized by their 
coefficients (infection transmission, reproduction number, 
probability of hospitalized, mortality rate, etc.) that should be 
identified using epidemic data (inverse problem) [8], that 
could contain gaps and noise. The inverse problems are ill-
posed and its numerical solution should be regularized [9]. 
The regularization algorithm and mathematical models 
should be flexible to new strains of infectious disease, 
restrictive measures in the region and other seasonable 
epidemy for more suitable forecasting. 

New mean-field game (MFG) models of epidemic 
propagation use social behavior of population and could get 
forecasting maps closer to the reality [10], [11]. But the 
numerical solution of the MFG problem is usually unstable 
for a big-time modeling as well as the non-smooth data. 

Machine learning is one of the most promising approaches 
for modeling and forecasting the epidemic situation using the 
world-wide statistics. 

Deep learning approaches, such as data driven as well as 
physics informed neural networks (PINNs) are widely used in 
different applications as well as in epidemiology. In paper [12] 
the recurrent neural networks for disease prediction are 
developed for determination the future flues using real flu’s 
data. In paper [13] authors apply two approaches of deep 
learning: support vector regression and long short-term 
memory networks usually called LSTM, are a special kind of 
recurrent neural networks (RNN), capable of learning long-

term dependencies. Simulation results show that LSTM 
provides more realistic results in the Indian Scenario. The 
combination of different LSTM and residual neural networks 
are capable of learning dynamical systems and shows that the 
vaccination rate with higher efficacy lowers the infectiousness 
and basic reproduction number based on COVID-19 data for 
the state of Tennessee in USA [14]. 

In papers [15]–[17] PINNs that the alternative to 
traditional numerical methods for solving system of 
differential equations used to describe dynamics of infectious 
diseases are proposed. PINNs are included the classical SIR 
models described by systems of ordinary differential 
equations (ODEs). The system of ODEs and its time 
derivative are included in the residual loss function of PINNs 
in addition to the data error between the current network 
output and the time series data of the compartment sizes. The 
results show that the proposed PINNs approach is a reliable 
candidate for both solving such systems and for helping 
identify important parameters that control the disease 
dynamics. 

This paper proposes short-term forecasting COVID-19 
epidemic in the Russian Federation regions, i.e. expected 
number of new diagnosed and hospitalized cases of COVID-
19 in Moscow, Saint-Petersburg and Novosibirsk region, 
using deep learning approach for epidemic and social data of 
considering regions and world-wide since 2020 (see Section 
II). The neural network based on recurrent and full-connected 
layers is described Section III. Deep optimization is applied 
on epidemic and social data by dividing them into training, 
validation, and test samples, as well as the use of the roll 
forward cross-validation technique (see Section III-B). The 
results of forecasting for considered regions are analyzed in 
Section IV. 

II. FEATURE ENGINEERING AND DATA PROCESSING 
The infectious disease is described by statistical 

information of epidemic, social and economic situation in the 
region. Every outbreak of new epidemic is characterized by 
changes in epidemiological and socioeconomic parameters. 
The statistical information should be prepared and proceeded 
for usage in machine learning. In the next sections epidemic 
and social data are described and analyzed. 

A. Epidemic Data 
The epidemic data of COVID-19 propagation in Moscow, 

Saint Petersburg and Novosibirsk region was collected from 
open sources (websites) such as number of tested and 
diagnosed people using polymerase chain reaction (PCR) 
analysis, recovered, hospitalized, critical and mortality 
people, self-isolation index by Yandex and the rate of 



antibody IgG of investigated population. The detailed burials 
with COVID-19 diagnose are used for Novosibirsk region as 
well [3]. Also, we use world-wide and Europe epidemic data 
about new diagnosed and mortality cases of COVID-19. All 
COVID-19 epidemic data for considered regions are 
collected at website https://covid19-modeling.ru/data. 

The most of data are expressed as time series and 
processed as follows: 

• Filling in missing values in the data using linear 
interpolation. 

• Replacement of extreme values (negative, too large, 
etc.) by interpolation (elimination of outliers in the 
data). 

• Data smoothing (exponential moving average). The 
noisier data were smoothed with a 14-day exponential 
moving average, the less noisy data were smoothed 
with a 7-day exponential moving average. 

The Fig. 1 demonstrates the epidemic data for Moscow 
that are used in feature engineering. 

 
Fig. 1. Statistical data of COVID-19 propagation in Moscow, World and 
Europe from 05.2020 to 05.2023 after exponential moving average: new 
diagnosed and hospitalized people in Moscow (1 row), mortality and Yandex 
self-isolation index in Moscow (2 row), percentage of people with IgG 
antibodies in Moscow and asymptomatic cases in Russia (3 row) and new 
diagnosed in the World and Europe (4 row). 

Note, that the emergence of new strains of SARS-CoV-2 
(Delta, Omicron, Centaurus, Cerberus, etc.) is accompanied 
by an outbreak, making the data non-uniformly distributed. 
For normalization of time series (for example, data in the first 
row in Fig. 1) the logarithm transform is applied. 

Additional data were generated to train the neural 
network: logarithmic increments for 𝛿 = 3, 𝛿 = 7 and 𝛿 =
14  days of new diagnosed 𝑓!(𝑡)  and hospitalized 𝑓"(𝑡) 
people in considered regions as follows: 

𝑓#$(𝑡) = ln(𝑓#(𝑡) + 1) − ln(𝑓#(𝑡 − 𝛿) + 1) ,			𝑖 = 1,2. 

Fig. 2 shows the obtained time series (features) for new 
diagnosed and hospitalized cases due to COVID-19 in 
Moscow. 

 
Fig. 2. The logarithm of new diagnosed 𝑓!"(𝑡) (1 column) and hospitalized 
𝑓#"(𝑡) (2 column) people with COVID-19 in Moscow with 𝛿 = 3 (1 row) 
and 𝛿 = 14 days (2 row). 

B. Social Data 
In additional to the epidemic data, we use restriction 

measures (social data) that have big influence on the epidemic 
propagation [18]. Such social data (masks wearing, open/close 
workplaces, schools, and public places) are available at 
regional websites. The main dates and measures in three 
regions are demonstrated in Table I. These measures were 
collected in binary time series using following rules: 

• Holidays and weekends. Binary time series filled with 
values 0 or 1 (1 is a holiday or weekend,) 0 - other days. 

• Seasonality. There are 7 binary time series. First row 
for Monday: 1 if the current day is Monday, 0 for the 
other days. Similarly for the other 6 days of the week. 

• • Restrictions in the region (see Table I). There are two 
binary time series. For the first row: 1 means that 
restrictions are imposed on the current day, 0 - other 
days. For the second row 1 means that some 
restrictions are cancelled, 0 - other days. 

TABLE I.  THE MAIN RESTRICTION MEASURES IN 
MOSCOW, SAINT PETERSBURG AND NOVOSIBIRSK 

REGION FROM MARCH 2020 TO MARCH 2022 

Restriction measures Moscow Saint 
Petersburg 

Novosibirsk 
region 

2020 
Closed of schools 16.03 – 12.04 18.03 – 01.04 
Public places are 
closed, self-isolation 
and quarantine 
measures are 
controlled by 
government 

28.03 – 31.05 

Mandatory wearing of 
masks 

27.04 (to the March 2022) 

Restrictions access to 
public places, 30% of 
workplaces are 
switched to remote 
mode 

13.11 – 
15.01.2021 

05.10 – 
02.11 

– 

2021 
Public, workplaces and 
schools are temporary 
closed 

12.06 – 20.06 – 

Public places, 30% 
workplaces and 
schools are mandatory 
closed 

28.10 – 07.11 



QR codes are applied 
in public places 

08.11 – 31.12 – 

2022 
All restriction 
measures are cancelled 

14.03 

III. NEURAL NETWORK MODEL 
Supervised machine learning methods are a class of 

mathematical methods that are characterized not by a direct 
problem solution, but by training and identifying empirical 
patterns on a set of 𝑁 experiments (historical data) 𝑋 = {𝑥#}, 
𝑖 = 1,… ,𝑁, with previously known results 𝑌 = ;𝑦%=. In this 
paper we use 𝑗 = 1,2 for 𝑌  set where 𝑦!  and 𝑦"  represents 
the new diagnosed and hospitalized people respectively. Each 
object 𝑥#  from 𝑋  is characterized by 𝑀  features, i.e. 𝑥# =
{𝑥#!, . 𝑥#&}. In this paper 𝑥#  represents the part (𝑡# − 𝐿, 𝑡#), 
𝑖 = 1,… ,𝑁, of time series of statistical data (see Fig. 3). In 
this paper we use the follows 𝑀 = 20  features for each 
region: 

• daily diagnosed 𝑓!(𝑡)  and its logarithm functions 
𝑓!'(𝑡), 𝑓!((𝑡), 𝑓!!)(𝑡), 

• hospitalized 𝑓"(𝑡)  and its logarithm functions 𝑓"'(𝑡), 
𝑓"((𝑡), 𝑓"!)(𝑡), 

• the logarithm functions of daily mortality for 𝛿 = 3 
and 𝛿 = 7 days, 

• the percentage of people with IgG antibodies and its 
logarithm functions for 𝛿 = 3 , 𝛿 = 7  and 𝛿 = 14 
days, 

• Yandex self-isolation index 

and for all regions 

• daily diagnosed 𝑓!(𝑡) in the World and Europe and its 
logarithm functions 𝑓!'(𝑡) and 𝑓!((𝑡), 

• the percentage of asymptomatic cases in Russia and 
the logarithm function with 𝛿 = 7. 

 
Fig. 3. The scheme of data processing in neural network. 

For forecasting by the neural network, we chose two target 
functions: 

𝐹#(𝑡 + 𝑘) = ln(𝑓#(𝑡 + 𝑘) + 1) − ln(SMA(𝑓#(𝑡), 7) + 1), 

where SMA(𝑓#(𝑡),7) is 7-days smooth moving average of 𝑓#. 

A. Model Structure 
The structure of neural network is based on the data type 

(time series) with long short-term memory and described by 
recurrent and full connected layers. The input layer consists in 

𝑀 = 20 time series with time window 𝐿 days (see Fig. 3). On 
the next step input data 𝑥#* , 𝑖 = 1,… ,𝑁 , 𝑚 = 1,… ,𝑀 , 
transform through the two recurrent layers of LSTM type with 
dropout regularization [19-20]. Such layers could analyze 
features and time characteristics in data. 

The output data of the second LSTM layer are processed 
by batch normalization [21]. This data is transformed using 
full connected layer with ReLU activation function. 

The neural network has two outputs. The first and the 
second outputs form the 5 days forecasting of time series of 
sequences of new diagnosed 𝐹!(𝑡 + 𝑘) , and hospitalized 
𝐹"(𝑡 + 𝑘), 𝑘 = 1,… ,5, people of COVID-19. The forecasting 
process is based on full connected layer. 

B. Parameter Optimization and Cross-Validation 
We divided the data into training (from 03.2020 to 

01.2022), validation (from 01.2022 to 07.2022), and test 
(from 07.2022 to 05.2023 for Moscow and Saint Peterburg 
and from 07.2022 to 12.2022 for Novosibirsk region) periods. 
This breakdown was chosen for the following reasons: the 
training data include Alpha, Beta, Delta strains of SARS-
CoV-2, the validation sample has Omicron strain, and the test 
sample has Centaur strain for investigation. 

On the training sample we optimized the weights of the 
neural network using stochastic gradient method with 
backpropagation and regularization approaches. 

Using validation sampling we optimized the neural 
network's hyperparameters by minimizing the mean square 
error of the neural network prediction with real data on the 
validation period. After obtaining the optimal set of 
hyperparameters (see Table II) the neural network was 
trained for the period from 03.2020 to 07.2022 and the 
forecast for the test period was performed. 

TABLE II.  OPTIMAL NEURAL NETWORK 
HYPERPARAMETERS FOR MOSCOW, ST. PETERSBURG 

AND NOVOSIBIRSK REGION 

Hyperparameter Moscow St. 
Petersburg 

Novosibirs
k region 

Number of forecast days 𝐾 = 5 
Time window look back 
period (number of days 
used to get the forecast) 

𝐿 = 5 
days 

𝐿 = 17 days 𝐿 = 5 days 

Number of training features 𝑀 = 20 
Optimization method Adam RMSprop RMSprop 
Descent coefficient in the 
gradient method (learning 
rate) 

0.0016 0.015 0.006 

Batch size (number of 
training samples for the 
gradient descent method) 

35 5 45 

Number of epochs (number 
of complete passes through 
the training dataset) 

100 

LSTM, layer 1: dimension 
of the output 

12 24 8 

LSTM, layer 2: dimension 
of the output 

6 17 17 

LSTM layers: dropout 
regularization ratio 

0.03 0.04 0.03 

LSTM layers: recurrent 
dropout regularization 

0.19 0.45 0.66 

Dense layer: dimension of 
the output 

11 49 13 



IV. FORECASTING RESULTS 
The forecasting results at day 𝑡 + 5  for 𝑡  from the test 

period for new diagnosed of COVID-19 (Fig. 4) and 
hospitalized with COVID-19 (Fig. 5) are presented for 
Moscow (1st row), Saint Petersburg (2nd row) and 
Novosibirsk region (3rd row). The scenario of COVID-19 
propagation (red line for left pictures) is compared with the 
real data at the day 𝑡 + 5 (black dots for left pictures). The 
middle pictures in Fig. 4 and 5 describe the difference between 
predicted (blue dots) and true (red line) values, i.e. if blue dots 
are far from the red line then the prediction is worse. The 
histogram of the model prediction error (right column of Fig. 
4, 5) calculated as the difference between the true values and 
the obtained predictions. The mean absolute error (MAE) on 
the test period is less then 5% (Table III). The higher accuracy 
for Novosibirsk region relates to more detailed data 
processing for the neural network [2], [3], [22]. 

TABLE III.  MAE OF THE NEURAL NETWORK ON TEST PERIOD 
(PEOPLE) 

Output data Moscow Saint 
Petersburg 

Novosibirsk 
region 

New diagnosed 𝑓! 342 240 58 
Hospitalized 𝑓# 10 11 35 

CONCLUSION 
The constructed neural network, based on the processing 

of real data on the spread of COVID-19 in the regions of the 
Russian Federation, showed high accuracy of 5-day short-
term forecasts for new diagnosed and hospitalized people on 
the test period from July 2022 with real data. The presented 
approach is suitable for modeling of COVID-19 propagation 
in any Russian region for any period.  

The proposed approach makes it possible to refine other 
mathematical models of the spread of infectious diseases, 
such as compartmental or agent-based models [3], [6]. It is 
possible to combine deep learning with classical models for 
learning of new disease characteristics and better forecasting. 
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Fig. 4. The forecasting of new diagnosed people (left, red curve) in Moscow (1st row), Saint Petersburg (2nd row) and Novosibirsk region (3rd row) to 5 days 
based on test data (black dots). The central picture is the comparison of prediction data (blue dots) with true (red line), the right picture is the error histogram. 

 
 

 

 

 
Fig. 5. The forecasting of hospitalized people (left, red curve) in Moscow (1st row), Saint Petersburg (2nd row) and Novosibirsk region (3rd row) to 5 days 
based on test data (black dots). The central picture is the comparison prediction data (blue dots) with true (red line), the right picture is the error histogram. 


